Inception-V1 Architecture Explained .
Paper : Going Deeper with Convolutions .
Authors : Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich. Google, University of Michigan, University of North Carolina .
Published in : 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) .
Model Architecture :
Stem Block :
Inception Block :
Auxiliary classifier Block :
keras :
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
from keras.models import Model
from keras.layers.merge import concatenate
from keras.layers import Conv2D , MaxPool2D ,AveragePooling2D, Dense , Dropout , Flatten , Input , GlobalAveragePooling2D
def InceptionBlock(previous_layer , nbr_f1 , nbr_f2_1 , nbr_f2_2 , nbr_f3_1 , nbr_f3_2 , nbr_f4) :
#Path 1
path1 = Conv2D(filters=nbr_f1, kernel_size = (1,1), padding='same' , activation='relu')(previous_layer)
#Path 2
path2 = Conv2D(filters=nbr_f2_1, kernel_size = (1,1), padding='same' , activation='relu')(previous_layer)
path2 = Conv2D(filters=nbr_f2_2, kernel_size = (3,3), padding='same' , activation='relu')(path2)
#Path 3
path3 = Conv2D(filters=nbr_f3_1, kernel_size = (1,1), padding='same' , activation='relu')(previous_layer)
path3 = Conv2D(filters=nbr_f3_1, kernel_size = (5,5), padding='same' , activation='relu')(path3)
#Path 4
path4 = MaxPool2D(pool_size=(3,3) , strides=(1,1) , padding='same') (previous_layer)
path4 = Conv2D(filters=nbr_f4, kernel_size = (1,1), padding='same' , activation='relu')(path4)
output_Layer = concatenate([path1 , path2 , path3 , path4], axis = -1)
return output_Layer
def InceptionV1():
input_layer = Input(shape = (224, 224, 3))
x1 = Conv2D(filters = 64, kernel_size = (7,7), strides=2 , padding='valid' , activation='relu' )(input_layer)
x1 = MaxPool2D(pool_size=(3,3) , strides=2 )(x1)
x1 = Conv2D(filters = 64, kernel_size = (1,1), strides=1 , padding='same' , activation='relu' )(x1)
x1 = Conv2D(filters = 192, kernel_size = (3,3), strides=1 , padding='same' , activation='relu' )(x1)
x1 = MaxPool2D(pool_size=(3,3) , strides=2 )(x1)
x1 = InceptionBlock(previous_layer=x1, nbr_f1=64, nbr_f2_1=96, nbr_f2_2=128, nbr_f3_1=16, nbr_f3_2=32, nbr_f4=32)
x1 = InceptionBlock(previous_layer=x1, nbr_f1=128, nbr_f2_1=128, nbr_f2_2=192, nbr_f3_1=32, nbr_f3_2=96, nbr_f4=64)
x1 = MaxPool2D(pool_size=(3,3) , strides=2 )(x1)
x1 = InceptionBlock(previous_layer=x1, nbr_f1=192, nbr_f2_1=96, nbr_f2_2=208, nbr_f3_1=16, nbr_f3_2=48, nbr_f4=64)
x2 = AveragePooling2D(pool_size = (5,5), strides = 3)(x1)
x2 = Conv2D(filters = 128, kernel_size = (1,1), padding = 'same', activation = 'relu')(x2)
x2 = Flatten()(x2)
x2 = Dense(1024, activation = 'relu')(x2)
x2 = Dropout(0.7)(x2)
x2 = Dense(5, activation = 'softmax')(x2)
x1 = InceptionBlock(previous_layer=x1, nbr_f1=160, nbr_f2_1=112, nbr_f2_2=224, nbr_f3_1=24, nbr_f3_2=64, nbr_f4=64)
x1 = InceptionBlock(previous_layer=x1, nbr_f1=128, nbr_f2_1=128, nbr_f2_2=256, nbr_f3_1=24, nbr_f3_2=64, nbr_f4=64)
x1 = InceptionBlock(previous_layer=x1, nbr_f1=112, nbr_f2_1=144, nbr_f2_2=288, nbr_f3_1=32, nbr_f3_2=64, nbr_f4=64)
x3 = AveragePooling2D(pool_size = (5,5), strides = 3)(x1)
x3 = Conv2D(filters = 128, kernel_size = (1,1), padding = 'same', activation = 'relu')(x3)
x3 = Flatten()(x3)
x3 = Dense(1024, activation = 'relu')(x3)
x3 = Dropout(0.7)(x3)
x3 = Dense(5, activation = 'softmax')(x3)
x1 = InceptionBlock(previous_layer=x1, nbr_f1=256, nbr_f2_1=160, nbr_f2_2=320, nbr_f3_1=32, nbr_f3_2=128, nbr_f4=128)
x1 = MaxPool2D(pool_size=(3,3) , strides=2)(x1)
x1 = InceptionBlock(previous_layer=x1, nbr_f1=256, nbr_f2_1=160, nbr_f2_2=320, nbr_f3_1=32, nbr_f3_2=128, nbr_f4=128)
x1 = InceptionBlock(previous_layer=x1, nbr_f1=384, nbr_f2_1=192, nbr_f2_2=384, nbr_f3_1=48, nbr_f3_2=128, nbr_f4=128)
x1 = GlobalAveragePooling2D(name = 'GAPL')(x1)
x1 = Dropout(0.4)(x1)
x1 = Dense(units=1000, activation='relu')(x1)
x1 = Dense(units=1000, activation='softmax')(x1)
model = Model(input_layer, [x1 , x2 , x3] , name='InceptionV1')
return model
pyTorch :
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import torch.nn as nn
import torch
import torch.nn.functional as F
from torchsummary import summary
class Stem(nn.Module):
def __init__(self):
super(Stem , self).__init__()
self.conv1 = nn.Conv2d(in_channels= 3 , out_channels= 64 ,kernel_size=(7,7) , stride= (2,2) , padding=(3,3))
self.conv2 = nn.Conv2d(in_channels= 64 , out_channels= 64 ,kernel_size=(1,1) , stride= (1,1), padding=0)
self.conv3 = nn.Conv2d(in_channels= 64 , out_channels= 192 ,kernel_size=(3,3) , stride= (1,1), padding=(1,1))
self.maxPool = nn.MaxPool2d(kernel_size=(3,3) , stride=(2,2) , padding=1)
def forward(self , x):
out = self.conv1(x)
out = F.relu(out)
out = self.maxPool(out)
out = self.conv2(out)
out = F.relu(out)
out = self.conv3(out)
out = F.relu(out)
out = self.maxPool(out)
return out
class InceptionBlock(nn.Module):
def __init__(self , nbr_channels ,nbr_kernels):
super(InceptionBlock , self).__init__()
k_1 , k_2_1 , k_2_2 , k_3_1 , k_3_2 , k_4 = nbr_kernels
self.branch1 = nn.Sequential(
nn.Conv2d(in_channels = nbr_channels , out_channels= k_1 , kernel_size=(1,1) , stride=(1,1)),
nn.ReLU()
)
self.branch2 = nn.Sequential(
nn.Conv2d(in_channels= nbr_channels , out_channels= k_2_1 , kernel_size= (1,1), stride=(1,1)),
nn.ReLU(),
nn.Conv2d(in_channels= k_2_1 , out_channels= k_2_2 , kernel_size= (3,3) , stride=(1,1) , padding=(1,1)),
nn.ReLU()
)
self.branch3 = nn.Sequential(
nn.Conv2d(in_channels= nbr_channels , out_channels= k_3_1 , kernel_size= (1,1) , stride=(1,1)),
nn.ReLU(),
nn.Conv2d(in_channels= k_3_1 , out_channels= k_3_2 , kernel_size= (5,5), stride=(1,1) , padding = (2,2)),
nn.ReLU()
)
self.branch4 = nn.Sequential(
nn.MaxPool2d(kernel_size=(3,3) , stride=(1,1) , padding=(1,1)),
nn.Conv2d(in_channels= nbr_channels , out_channels= k_4 , kernel_size= (1,1), stride=(1,1)),
nn.ReLU()
)
def forward(self , x):
out1 = self.branch1(x)
out2 = self.branch2(x)
out3 = self.branch3(x)
out4 = self.branch4(x)
return torch.cat([out1 ,out2 , out3 , out4] , 1)
class GoogleNet(nn.Module):
def __init__(self):
super(GoogleNet , self).__init__()
self.stem = Stem() # Out 192 chan
# Output Size : 28*28*256
self.Inception1_1 = InceptionBlock(192,[64 , 96 , 128 , 16 , 32 , 32])
# Output Size : 28*28*480
self.Inception1_2 = InceptionBlock(256,[128 , 128 , 192 , 32 , 96 , 64])
# Output Size : 14*14*512
self.Inception2 = InceptionBlock(480,[192 , 96 , 208 , 16 , 48 , 64])
# Output Size : 14*14*512
self.Inception3_1 = InceptionBlock(512,[160 , 112 , 224 , 24 , 64 , 64])
# Output Size : 14*14*512
self.Inception3_2 = InceptionBlock(512,[128 , 128 , 256 , 24 , 64 , 64])
# Output Size : 14*14*528
self.Inception3_3 = InceptionBlock(512,[112 , 144 , 288 , 32 , 64 , 64])
# Output Size : 14*14*832
self.Inception4 = InceptionBlock(528,[256 , 160 , 320 , 32 , 128 , 128])
# Output Size : 7*7*832
self.Inception5_1 = InceptionBlock(832,[256 , 160 , 320 , 32 , 128 , 128])
# Output Size : 7*7*1024
self.Inception5_2 = InceptionBlock(832,[384 , 192 , 384 , 48 , 128 , 128])
self.maxPool = nn.MaxPool2d(kernel_size=(3,3) , stride=(2,2) , padding=1)
self.avgPool = nn.AvgPool2d(kernel_size=(7,7) , stride=(1,1))
self.fc1 = nn.Linear(in_features=1024 , out_features =1000 )
self.fc2 = nn.Linear(in_features=1000 , out_features =1000 )
self.auxiliary_classifier_1 = nn.Sequential(
nn.AvgPool2d(kernel_size=(5,5) , stride=(3,3)),
nn.Conv2d(in_channels=512 , out_channels=128 , kernel_size=(1,1) , stride=(1,1)),
nn.ReLU(),
nn.Linear(in_features = 4, out_features=1024), #Missing This
nn.ReLU(),
nn.Linear(in_features=1024 , out_features=1000),
nn.Softmax()
)
self.auxiliary_classifier_2 = nn.Sequential(
nn.AvgPool2d(kernel_size=(5,5) , stride=(3,3) , padding = (1,1)),
nn.Conv2d(in_channels=528 , out_channels=128 , kernel_size=(1,1) , stride=(1,1)),
nn.ReLU(),
nn.Linear(in_features = 4, out_features=1024), #Missing This
nn.ReLU(),
nn.Linear(in_features=1024 , out_features=1000),
nn.Softmax()
)
def forward(self , x):
out = self.stem(x)
out = self.Inception1_1(out)
out = self.Inception1_2(out)
out = self.maxPool(out)
out = self.Inception2(out)
aux1 = self.auxiliary_classifier_1(out)
out = self.Inception3_1(out)
out = self.Inception3_2(out)
out = self.Inception3_3(out)
aux2 = self.auxiliary_classifier_2(out)
out = self.Inception4(out)
out = self.maxPool(out)
out = self.Inception5_1(out)
out = self.Inception5_2(out)
out = self.avgPool(out)
out = out.reshape(out.shape[0] , -1)
out = self.fc1(out)
out = F.relu(out)
out = nn.Dropout(p=0.4)(out)
out = self.fc2(out)
out = F.softmax(out)
return out