LeNet-5 Architecture Explained .
Paper : Gradient-Based Learning Applied to Document Recognition .
Authors : Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner .
Published in: Proceedings of the IEEE 1998 . Model Architecture :
let Apply our Formulas and see how an input Image with 32 * 32 * 1 size become a Vector with 100 length .
keras :
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D , AveragePooling2D , Dense , Dropout , Flatten
from tensorflow.keras.optimizers import Adam
def LeNet5():
model = Sequential()
model.add(Conv2D(filters=6 , kernel_size=(5,5) , strides=(1,1) , activation="tanh" , input_shape=(32 , 32 , 1)))
model.add(AveragePooling2D((2,2)))
model.add(Conv2D(filters=16 , kernel_size=(5,5) , strides=(1,1) , activation="tanh" ))
model.add(AveragePooling2D((2,2)))
model.add(Flatten())
model.add(Dense(units=120 , activation="tanh"))
model.add(Dropout(0.2))
model.add(Dense(units=84 , activation="tanh"))
model.add(Dropout(0.2))
model.add(Dense(units=10 , activation="softmax"))
adam = Adam(learning_rate=0.01)
model.compile(optimizer=adam , loss = 'binary_crossentropy' , metrics=['accuracy'])
return model
pyTorch :
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
from torch.nn import Conv2d , AvgPool2d , Linear , Flatten , Module
import torch.nn.functional as F
class LeNet5(Module):
def __init__(self):
super(LeNet5, self).__init__()
self.conv1 = Conv2d(in_channels = 1, out_channels = 6, kernel_size = (5,5) , stride = 1)
self.conv2 = Conv2d(in_channels = 6, out_channels = 16, kernel_size = (5,5) , stride = 1)
self.conv3 = Conv2d(in_channels = 16, out_channels = 120, kernel_size = (5,5) , stride = 1)
self.avgpool = AvgPool2d(kernel_size=2 , stride=2)
self.fc1 = Linear(in_features = 120, out_features = 84)
self.fc2 = Linear(in_features = 84, out_features = 10)
def forward(self , x):
x = self.conv1(x)
x = F.tanh(x)
x = self.avgpool(x)
x = self.conv2(x)
x = F.tanh(x)
x = self.avgpool(x)
x = self.conv3(x)
x = F.tanh(x)
x = x.view(x.shape[0] , -1)
x = self.fc1(x)
x = F.tanh(x)
x = self.fc2(x)
x = F.softmax(x , dim=1)
return x
Using The Model :
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
from tensorflow.keras.datasets import mnist
def load_dataSet():
(x_train , y_train) , (x_test , y_test) = mnist.load_data()
#Concatenate The Data
x = np.concatenate((x_train , x_test))
y = np.concatenate((y_train , y_test))
#Transform The Images from 28*28 to 32*32
x = np.pad(x , ((0,0) , (2,2) , (2,2)))
#Reshape The Data
x = x.reshape((x.shape[0] , 32 , 32 , 1))
#One Hot Encodig
y = to_categorical(y)
#Normalize The Data
x = x.astype('float32')
x /= 255.0
return x , y
def displayAccuracy(history):
# display The accuracy of our Model
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
def displayLoss(history):
# dsiplay the loss of our Model
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
if __name__ == "__main__":
# Load The DataSet
x , y = load_dataSet()
#Define The Model
model = LeNet5()
# Train The Model
history = model.fit(x , y ,validation_split=0.33, epochs=10, batch_size=100)
#display The Model Accuracy
displayAccuracy(history)
#display The Model Loss
displayLoss(history)
#display The Model Architecture
print("The Architecture of The Model is : ")
print(model.summary())