VGG-19 Architecture Explained .
Paper : Very Deep Convolutional Networks for Large-Scale Image Recognition
Authors : Karen Simonyan, Andrew Zisserman Visual Geometry Group, Department of Engineering Science, University of Oxford .
Published in : 2014 .
Model Architecture :
Keras :
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from keras.models import Model
from keras.layers import Conv2D , MaxPool2D , Input , Flatten , Dense , Dropout
def VGG19():
input_layer = Input(shape=(224 , 224 , 3))
#Block 1
x = Conv2D(filters = 64, kernel_size = (3,3), padding='same' , activation='relu') (input_layer)
x = Conv2D(filters = 64, kernel_size = (3,3), padding='same' , activation='relu') (x)
x = MaxPool2D(pool_size=(2,2) , strides=(2,2) , padding='same') (x)
#Block 2
x = Conv2D(filters = 128, kernel_size = (3,3), padding='same' , activation='relu') (x)
x = Conv2D(filters = 128, kernel_size = (3,3), padding='same' , activation='relu') (x)
x = MaxPool2D(pool_size=(2,2) , strides=(2,2) , padding='same') (x)
#Block 3
x = Conv2D(filters = 256, kernel_size = (3,3), padding='same' , activation='relu') (x)
x = Conv2D(filters = 256, kernel_size = (3,3), padding='same' , activation='relu') (x)
x = Conv2D(filters = 256, kernel_size = (3,3), padding='same' , activation='relu') (x)
x = Conv2D(filters = 256, kernel_size = (3,3), padding='same' , activation='relu') (x)
x = MaxPool2D(pool_size=(2,2) , strides=(2,2) , padding='same') (x)
#Block 4
x = Conv2D(filters = 512, kernel_size = (3,3), padding='same' , activation='relu') (x)
x = Conv2D(filters = 512, kernel_size = (3,3), padding='same' , activation='relu') (x)
x = Conv2D(filters = 512, kernel_size = (3,3), padding='same' , activation='relu') (x)
x = Conv2D(filters = 512, kernel_size = (3,3), padding='same' , activation='relu') (x)
x = MaxPool2D(pool_size=(2,2) , strides=(2,2) , padding='same') (x)
#Block 5
x = Conv2D(filters = 512, kernel_size = (3,3), padding='same' , activation='relu') (x)
x = Conv2D(filters = 512, kernel_size = (3,3), padding='same' , activation='relu') (x)
x = Conv2D(filters = 512, kernel_size = (3,3), padding='same' , activation='relu') (x)
x = Conv2D(filters = 512, kernel_size = (3,3), padding='same' , activation='relu') (x)
x = MaxPool2D(pool_size=(2,2) , strides=(2,2) , padding='same') (x)
#Block 6
x = Flatten()(x)
x = Dense(units = 4096 , activation='relu') (x)
x = Dropout(rate = 0.2)(x)
x = Dense(units = 4096 , activation='relu') (x)
x = Dropout(rate = 0.2)(x)
x = Dense(units = 1000 , activation='softmax') (x)
model = Model(inputs = input_layer , outputs = x , name = 'VGG-19')
return model
pyTorch :
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import torch.nn as nn
import torch.nn.functional as F
from torchsummary import summary
class VGG19(nn.Module):
def __init__(self):
super(VGG19 , self).__init__()
self.conv1 = nn.Conv2d(in_channels=3 , out_channels=64 , kernel_size=(3,3), stride=(1,1) , padding=(1,1))
self.conv2 = nn.Conv2d(in_channels=64 , out_channels=128 , kernel_size=(3,3), stride=(1,1) , padding=(1,1))
self.conv3 = nn.Conv2d(in_channels=128 , out_channels=128 , kernel_size=(3,3), stride=(1,1) , padding=(1,1))
self.conv4 = nn.Conv2d(in_channels=128 , out_channels=256 , kernel_size=(3,3), stride=(1,1) , padding=(1,1))
self.conv5 = nn.Conv2d(in_channels=256 , out_channels=256 , kernel_size=(3,3), stride=(1,1) , padding=(1,1))
self.conv6 = nn.Conv2d(in_channels=256 , out_channels=512 , kernel_size=(3,3), stride=(1,1) , padding=(1,1))
self.conv7 = nn.Conv2d(in_channels=512 , out_channels=512 , kernel_size=(3,3), stride=(1,1) , padding=(1,1))
self.maxPool = nn.MaxPool2d(kernel_size=(2,2) , stride=(2,2))
self.fc1 = nn.Linear(in_features=25088 , out_features=4096)
self.fc2 = nn.Linear(in_features=4096 , out_features=4096)
self.fc3 = nn.Linear(in_features=4096 , out_features=1000)
def forward(self,x):
# 2 Conv Layers with 64 kernels of size 3*3
x = self.conv1(x)
x = F.relu(x)
x = self.conv2(x)
x = F.relu(x)
#Max Pooling Layer with kernel size 2*2 and stride 2
x = self.maxPool(x)
# 2 Conv Layers with 128 kernels of size 3*3
x = self.conv3(x)
x = F.relu(x)
x = self.conv4(x)
x = F.relu(x)
#Max Pooling Layer with kernel size 2*2 and stride 2
x = self.maxPool(x)
# 2 Conv Layers with 256 kernels of size 3*3
x = self.conv5(x)
x = F.relu(x)
x = self.conv5(x)
x = F.relu(x)
x = self.conv5(x)
x = F.relu(x)
x = self.conv6(x)
x = F.relu(x)
#Max Pooling Layer with kernel size 2*2 and stride 2
x = self.maxPool(x)
# 4 Conv Layers with 512 kernels of size 3*3
x = self.conv7(x)
x = F.relu(x)
x = self.conv7(x)
x = F.relu(x)
x = self.conv7(x)
x = F.relu(x)
x = self.conv7(x)
x = F.relu(x)
#Max Pooling Layer with kernel size 2*2 and stride 2
x = self.maxPool(x)
# 4 Conv Layers with 512 kernels of size 3*3
x = self.conv7(x)
x = F.relu(x)
x = self.conv7(x)
x = F.relu(x)
x = self.conv7(x)
x = F.relu(x)
x = self.conv7(x)
x = F.relu(x)
#Max Pooling Layer with kernel size 2*2 and stride 2
x = self.maxPool(x)
x = x.reshape(x.shape[0] , -1)
#Fully Connected Layer With 4096 Units
x = self.fc1(x)
x = F.relu(x)
#Fully Connected Layer With 4096 Units
x = self.fc2(x)
x = F.relu(x)
#Fully Connected Layer With 1000 Units
x = self.fc3(x)
x = F.softmax(x)
return x